
 

 

University of West Bohemia in Pilsen 

Department of Computer Science and Engineering 

Univerzitni 8 

30614 Pilsen 

Czech Republic 

 

 

 

 

 

 

 

 

 

 

 

 

 

FlashPoM Designer 
Technical Report 

Václav Skala, Jan Kaiser, František Novák, Vojtěch Hladík 
 

 

 

 

 

 

Technical Report No. DCSE/TR-2007-07 

July, 2007 

 

Distribution: public 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



Technical Report No. DCSE/TR-2007-07 

July 2007 

FlashPoM Designer 

Václav Skala, Jan Kaiser, František Novák, Vojtěch Hladík  
 

 

Abstract 
This report is a specification of the application that was developed for the 

MATEO/FlashPoM project. FlashPoM editor is a vector graphical editor for biological 

chip design. It enables user to design chip layer by layer. Software provides output in 

FPSVG file that is ready for chip fabricating process. Tools that helps user to design 

and visualize what she is designing are included. Key features are Cost function that 

estimates cost of designed device, Check constraints, that checks whether chip is 

manufacturable, Cut View and 3D View, that visualize designed chip. 

 
This work was supported by MATEO–FlashPoM, EU INTERREG IIIC and project 

MŠMT ČR, project 2C06002 VIRTUAL. 

 

Copies of this report are available on 
http://www.kiv.zcu.cz/publications/  
or by surface mail on request sent to the following address: 

 

University of West Bohemia in Pilsen 

Department of Computer Science and Engineering 

Univerzitni 8 

30614 Pilsen 

Czech Republic 

 

Copyright © 2007 University of West Bohemia in Pilsen, Czech Republic 



 - 1 - 

Contents 
 

1 Introduction ........................................................................................................................ 3 

1.1 Problem Statement ....................................................................................................... 3 

1.2 System Personnel ......................................................................................................... 3 

1.2.1 FlashPOM project leader ...................................................................................... 3 

1.2.2 FlashPOM designer project manager at UWB ..................................................... 3 

1.2.3 FlashPOM designer system analyst ...................................................................... 3 

1.2.4 FlashPOM designer system developer ................................................................. 4 

1.2.5 FlashPOM designer end users .............................................................................. 4 

1.3 Operational Setting ...................................................................................................... 4 

1.4 Impact Analysis ........................................................................................................... 4 

1.5 Related Systems ........................................................................................................... 4 

2 Functional requirements ..................................................................................................... 5 

2.1 User Interface Overview .............................................................................................. 5 

2.1.1 Menu bar .............................................................................................................. 5 

2.1.2 Toolbars .............................................................................................................. 11 

2.1.3 Tool windows ..................................................................................................... 15 

2.1.4 Working area window ........................................................................................ 16 

2.1.5 Status bar ............................................................................................................ 17 

2.1.6 Keyboard shortcuts ............................................................................................. 17 

2.2 File formats ................................................................................................................ 19 

2.2.1 FPSVG - Output language for vector image definition, based on SVG (Scalable 

Vector Graphics) .............................................................................................................. 19 

2.2.2 FPM – FlashPOM proprietary file format .......................................................... 26 

2.2.3 File with available materials and cost function parameters ............................... 26 

2.2.4 Timestamp file .................................................................................................... 28 

2.3 System-Specific Requirements .................................................................................. 28 

2.3.1 Elementary objects ............................................................................................. 28 

2.3.2 Program functions .............................................................................................. 29 

2.3.3 Chip design functions ......................................................................................... 29 

2.3.4 Chip visualization functions ............................................................................... 30 

2.3.5 Update ................................................................................................................ 30 



 - 2 - 

3 Non-Functional Requirements ......................................................................................... 31 

3.1 System-Related Non-Functional Requirements ........................................................ 31 

3.1.1 Operational Environment ................................................................................... 31 

3.1.2 Time plan ............................................................................................................ 31 

3.2 User Interview Transcripts ........................................................................................ 31 

 



 - 3 - 

1 Introduction 
Purpose of this document is to specify requirements on the software editor for chip design. 

Software enables the user to design the chip layer by layer. Each layer has a thickness 

associated with it and a set of geometrical shapes. If the layer belongs to class 'electrodes' it 

can be a glass layer or a conductor layer. (Electrodes are actually fabricated by stacking a 

patterned conductor on a glass substrate). If the layer is a micro fluidics layer, the shapes in it 

will be trenches, holes, etc. One device could have multiple layers of each type stacked one on 

top of the other. Software output is file in SVG like format that is ready for chip fabricating 

process. 

Software should do some rule checks and cost estimations and include them in the descriptor 

files. The rule checks will ensure that the device can actually be fabricated with technology 

developed within the FlashPOM project and the cost estimation will provide price estimate 

based on the structures put in the design.  

Finally, the GUI should enable the user to get the best possible idea of the 3D appearance of 

the device he or she has fabricated. Top view and cross-section are a must but the possibility 

of doing 3D rendering with rotation in space, etc. is welcome. 

The software should be easy to use and downloadable off the website.  

1.1 Problem Statement 

General problems to be solved by the software are the following: 

 to provide reliable and easy to use software for chip designing  

 to provide output in SVG like format 

While there are numerous vector graphic editors that can be used for chip designing they are 

general and aimed to artists. Software developed within this project is aimed on chip 

designers. It provides solution with functional improvements over existing tools. On the other 

hand unnecessary functions for chip design are to be omitted (i.e. graphic objects color, 

various fill patterns…) 

1.2 System Personnel 

System personnel involved in the FlashPOM designer are the following: 

1.2.1 FlashPOM project leader 

Dr. Enric Claverol-Tinturé  ectmail@eel.upc.es 

Enric is leader of the FlashPOM project. 

1.2.2 FlashPOM designer project manager at UWB 

Prof. Ing. Václav Skala, Csc.  skala@kiv.zcu.cz 

Václav is leader of the designer part of FlashPOM project. 

1.2.3 FlashPOM designer system analyst 

Jan Kaiser    kaiserj@kiv.zcu.cz 

Jan is responsible for the design and development of FlashPOM designer. 



 - 4 - 

1.2.4 FlashPOM designer system developer 

Vojtěch Hladík   vojta.hladik@email.cz 

František Novák   novak_frantisek@centrum.cz 

Vojta and František are students at the University of West Bohemia and developers of the 

FlashPOM designer. 

1.2.5 FlashPOM designer end users 

Michael Riss    mriss@pcb.ub.es 

Carlos Fernandez Escuin  kescuin@gmail.com 

Michael is designer of biological chips. He is the typical end user of developed application. 

Carlos is working on the laser device for chip layers fabricating. His device works with output 

of developed application. 

1.3 Operational Setting 

FlashPOM designer is intended to design chip layers on common desktop computer. There are 

no specific operational settings requirements.  

1.4 Impact Analysis 

The positive potential impact of the FlashPOM designer as a functioning system is to increase 

user productivity during chip design process.  

1.5 Related Systems  

Open source and commercial software packages that were used till this time include: 

 Macromedia Freehand 

 xFig 

 CorelDraw 

 InkScape 

There also exist similar commercial project for PCB designing and manufacturing. On the 

www.pcbexpress.com is easy to find two software packages. ExpressSCH is a schematic 

design program while ExpressPCB is used for designing circuit board layout. Both programs 

are small, very simple and intuitive. User can check the price of designed circuit board via 

cost function that is updated from the internet and finally order the PCB. 

 

 



 - 5 - 

2 Functional requirements 

2.1 User Interface Overview 

Screen of typical working environment is shown in Figure 2-1. Window of the application 

consists of menu bar, tool bars, and tool windows, tabbed windows for chip design and status 

bar. All these parts can be moved or turned off to meet user requirements on their placement. 

Most of the commands are accessible from menu, toolbars and are also reachable using 

keyboard shortcuts. 

 
Figure 2-1: Application screen 

2.1.1 Menu bar 

The Menu bar is a text menu with shortcuts to most functions of the applications. Command 

shortcuts are placed to appropriate groups. 

 
Figure 2-2: Menu bar 

2.1.1.1 File 

The File group contains typical commands for manipulating data files and performing other 

system-level functions. 



 - 6 - 

2.1.1.1.1 New 

File->New creates a new empty chip design. Wizard that will guide user thorough entering 

necessary chip properties will pop-up. These include selection from available substrate 

materials and available layer materials. Lists of available materials will be stored in 

configuration file that can be regularly updated over the internet. 

2.1.1.1.2 Open 

File->Open opens an existing chip design from a previously saved file. 

2.1.1.1.3 Save 

File->Save saves the currently active chip design on the file from which it was opened or on a 

new file if it was created from New. Precise description of the proprietary file format is to be 

developed and described. 

2.1.1.1.4 Save As 

File->Save As allows the current chip design to be saved on different file from which it was 

opened or most recently saved upon. Precise description of the proprietary file format is to be 

developed and described. 

2.1.1.1.5 Close 

File->Close will close active chip design project. 

2.1.1.1.6 Import from FPSVG 

File->Import from FPSVG imports chip design from the SVG like file. 

2.1.1.1.7 Export to FPSVG 

File->Export to FPSVG exports chip design to SVG like file which is to be loaded to laser 

device for chip fabricating. For FSVG file format specification see 2.2.1. 

2.1.1.1.8 Recent Files 

File->Recent Files contains files that were recently opened. Number of showed files can be 

set in application settings. 

2.1.1.1.9 Print 

File->Print will show dialog for printing current chip design. 

2.1.1.1.10 Exit 

File->Exit ends the application. There should be check if user wants to exit application 

without saving last changes on chip design file. 

2.1.1.2 Edit 

The Edit menu contains commands for manipulating chip elements during editing. 

2.1.1.2.1 Undo 

Edit->Undo undoes the most recently completed undoable command. Number of undo steps 

can be set in application settings. 



 - 7 - 

2.1.1.2.2 Redo 

Edit->Redo redoes the most recently undone command. Number of redo steps can be set in 

application settings. 

2.1.1.2.3 Cut 

Edit->Cut removes and copies the currently selected element to windows clipboard.  

2.1.1.2.4 Copy  

Edit->Copy copies currently selected element to windows clipboard. 

2.1.1.2.5 Paste 

Edit->Paste inserts most recently cut or copied element from windows clipboard to active 

layer. 

2.1.1.2.6 Delete 

Edit->Delete removes currently selected element. 

2.1.1.2.7 Snap to Grid 

Edit->Snap to Grid enables/disables snapping to grid. 

2.1.1.2.8 Snap to Guidelines 

Edit->Snap to Guidelines enables/disables snapping to guidelines. 

2.1.1.3 View 

The view menu contains command that may help user to make his working environment 

friendly. 

2.1.1.3.1 Rulers 

View->Rulers shows or hides rulers in the chip design window. 

2.1.1.3.2 Grid 

View->Grid shows or hides grid in the chip design window.  

2.1.1.3.3 Guidelines 

View->Guidelines shows or hide guidelines. Guidelines are lines pulled out of the ruler used 

for aligning objects.  

2.1.1.3.4 Zoom In 

View->Zoom In zooms in view on chip design window. For zoom definition see 2.3.3.1. 

2.1.1.3.5 Zoom Out 

View->Zoom Out zooms out view on chip design window. For zoom definition see 2.3.3.1. 

2.1.1.3.6 Fit to Substrate 

View->Fit to Substrate fits zoom such that whole substrate is visible. 



 - 8 - 

2.1.1.3.7 Fit to Height 

View->Fit to Height zooms such that substrate fits the window on height. 

2.1.1.3.8 Fit to Width 

View->Fit to Width zooms such that substrate fits the window on width. 

2.1.1.4 Layer 

The Layer menu contains commands for adding and deleting layers in active chip design 

project. 

2.1.1.4.1 New Layer 

Layer->New Layer command shows dialog window that guides user in adding new layer to 

active chip design. 

2.1.1.4.2 Delete Layer 

Layer->Delete Layer command deletes active layer from the current chip design. 

2.1.1.5 Arrange 

The Arrange menu contains commands for manipulating selection of objects. 

2.1.1.5.1 Group 

Arrange->Group groups selected elements such they behave as a one unit. Operations that are 

performed on a group are applied equally to each of its objects. 

2.1.1.5.2 Ungroup 

Arrange->Ungroup is a reverse command to group. It divides the group to former elements. 

2.1.1.5.3 Ungroup All 

Arrange->Ungroup All divides group tree to former elements, does not matter how many 

group commands were applied before (i.e. this is particularly helpful if user wants to break 

apart the group that was made of a group and element) 

2.1.1.5.4 Weld 

Arrange->Weld command combines selected elements to new one. 

2.1.1.5.5 Trim 

Arrange->Trim command trims one element from another one. 

Typical use is: 

 select objects you want to trim 

 trim command 

 select the object that trims the selection 

2.1.1.5.6 Intersect 

Arrange->Intersect command produce new element that is intersection of selected elements. 



 - 9 - 

2.1.1.5.7 Align Left 

Arrange->Align Left command aligns two elements such that left sides of respective 

bounding boxes coalesce. 

2.1.1.5.8 Align Right 

Arrange->Align Right command aligns two elements such that right sides of respective 

bounding boxes coalesce. 

2.1.1.5.9 Align Top 

Arrange->Align Top command aligns two elements such that top sides of respective bounding 

boxes coalesce. 

2.1.1.5.10 Align Bottom 

Arrange->Align Bottom command aligns two elements such that bottom sides of respective 

bounding boxes coalesce. 

2.1.1.5.11 Align Centers Horizontally 

Arrange->Align Centers Horizontally command aligns two elements such that centers of 

respective bounding boxes coalesce in horizontal direction. 

2.1.1.5.12 Align Centers Vertically 

Arrange->Align Centers Vertically command aligns two elements such that centers of 

respective bounding boxes coalesce in vertical direction. 

2.1.1.6 Tools 

Tools menu contains tools for setting the working environment of the editor, advanced 

visualization of the chip design, checking and estimating price of the chip design. There are 

also commands for updating over the internet. 

2.1.1.6.1 Settings 

Tools->Settings pops-up settings dialog where will be possible to set working environment 

settings, such as color, length of history, default directories and settings of particular 

functions. 

2.1.1.6.2 Cut View 

Tools->Cut View shows window with visualization of the cut thorough the chip design. 

2.1.1.6.3 3D View 

Tools->3D View shows window with 3D visualization of the chips design. 

2.1.1.6.4 Check Constraints 

Tools->Check constraints start utility that checks current chip design whether it is ready for 

manufacturing. 

2.1.1.6.5 Estimate Chip Cost 

Tools->Estimate Chip Cost estimates price for current chip design. 



 - 10 - 

2.1.1.6.6 Update Production Settings File 

Tools->Update Production Settings File checks if there is new file with material definitions 

and laser device parameters available and offers the download of the file. 

2.1.1.6.7 Update the FlashPOM Editor 

Tools->Update the FlashPOM Editor checks whether new version of the software is available 

and offers the download. 

2.1.1.7 Window 

The Window menu contains commands for showing or hiding tool windows and toolbars. 

2.1.1.7.1 Library 

Window->Library shows or hides Library tool window.  

2.1.1.7.2 Layers 

Window->Layers shows or hides Layers tool window. 

2.1.1.7.3 Properties 

Window->Properties shows or hides Properties tool window. 

2.1.1.7.4 Standard 

Window->Standard shows or hides Standard toolbar. 

2.1.1.7.5 Creation Tools 

Window->Creation Tools shows or hides Creation Tools toolbar. 

2.1.1.7.6 Helpers 

Window->Helpers shows or hides Helpers toolbar. 

2.1.1.7.7 Fast Settings 

Window->Fast Settings shows or hides Fast Settings toolbar. 

2.1.1.7.8 Align 

Window->Align shows or hides Align toolbar. 

2.1.1.7.9 Status bar 

Window->Status bar shows or hides Status bar. 

2.1.1.7.10 Reset Window Positions 

Window->Reset Window Positions sets tool window positions to default values. 



 - 11 - 

2.1.1.8 Help 

2.1.1.8.1 About 

Help->About command shows dialog window with common information about the 

application, 

2.1.1.8.2 User Reference 

Help->User Reference command opens help for the application. This should be in .mht or .pdf 

format. 

2.1.2 Toolbars 

Toolbars are menus with graphical buttons that allows user easy and fast access to most 

utilized functions.  

2.1.2.1 Standard toolbar 

 
Figure 2-3: Standard toolbar 

2.1.2.1.1 New Project 

See 2.1.1.1.1 

2.1.2.1.2 Open Project 

See 2.1.1.1.2 

2.1.2.1.3 Save Project 

See 2.1.1.1.3 

2.1.2.1.4 New Layer 

See 2.1.1.4.1 

2.1.2.1.5 Cut 

See 2.1.1.2.3 

2.1.2.1.6 Copy 

See 2.1.1.2.4 

2.1.2.1.7 Paste 

See 2.1.1.2.5 

2.1.2.1.8 Distribute 

Distribute function helps user to make copies of selected element placed into rectangular 

array. 

2.1.2.1.9 Undo 

See 2.1.1.2.1 



 - 12 - 

2.1.2.1.10 Redo 

See 2.1.1.2.2 

2.1.2.1.11 Select and Edit 

Select and edit tools will enable user to select element or group of elements either by clicking 

on each or by selection rectangle. 

2.1.2.1.12 Select by Name 

Select by name starts up the dialog window that helps user to select element by name or 

placement in layer. 

2.1.2.1.13 Zoom 

Magnify the view on chip design window. Precise value can be set from keyboard or selected 

from listbox. For zoom definition see 2.3.3.1. 

2.1.2.1.14 Zoom Area 

Zoom area tool zooms rectangular selection to fit window of the screen. 

2.1.2.1.15 Move Working Area 

Move working area helper enables user to move working area such that design part of interest 

is in the center of the screen. 

2.1.2.1.16 Take Snapshot 

Take snapshot command takes the snapshot of current workspace and offers user to save it. 

2.1.2.2 Creation Tools toolbar 

Creation Tools toolbar contains tools for creating and editing objects. 

 
Figure 2-4: Creation Tools toolbar 

2.1.2.2.1 New Line 

New Line tool enables user to add line to active layer. 

2.1.2.2.2 New Rectangle 

New Rectangle tool enables user to add rectangle to active layer. 

2.1.2.2.3 New Ellipse 

New Ellipse tool enables user to add ellipse to active layer. 

2.1.2.2.4 Weld 

See 2.1.1.5.4 

2.1.2.2.5 Trim 

See 2.1.1.5.5 



 - 13 - 

2.1.2.2.6 Intersect 

See 2.1.1.5.6 

2.1.2.2.7 Flip Vertically 

Flip vertically command flips the selected object around the centre from top to bottom. 

2.1.2.2.8 Flip Horizontally 

Flip horizontally command flips the selected object around the centre from left to right. 

2.1.2.2.9 Rotate 90° clockwise 

Rotate 90° clockwise command turns the object around the transformation centre point by 90° 

clockwise. 

2.1.2.2.10 Rotate 90° degrees counter-clockwise 

Rotate 90° counter-clockwise command turns the object around the transformation centre 

point by 90° counter-clockwise. 

2.1.2.3 Fast Settings toolbar 

Fast settings toolbar allows user to enter nudge distance and grid distance parameters directly 

what is faster than entering them in the Tools->Settings dialog. 

 
Figure 2-5: Fast Settings toolbar 

2.1.2.3.1 Nudge distance 

When element is selected user can move it by pressing cursor keys. The distance object is 

moved is called nudge distance and can be entered directly using fast setting toolbar. 

2.1.2.3.2 Grid distance 

Grid distance is the interval between respective horizontal and vertical grid lines. 

2.1.2.4 Align toolbar 

Align toolbar contains functions to align one element to another.  

 
Figure 2-6: Align toolbar 

2.1.2.4.1 Align Left 

See 2.1.1.5.7 

2.1.2.4.2 Align Right 

See 2.1.1.5.8 

2.1.2.4.3 Align Top 

See 2.1.1.5.9 



 - 14 - 

2.1.2.4.4 Align Bottom 

See 2.1.1.5.10 

2.1.2.4.5 Align Centers Horizontally 

See 2.1.1.5.11 

2.1.2.4.6 Align Centers Vertically 

See 2.1.1.5.12 

2.1.2.5 Helpers toolbar 

Helpers toolbar contains tools that helps user to select and position objects precisely.  

 
Figure 2-7: Helpers toolbar 

2.1.2.5.1 Select elements inside selection rectangle only 

Using rectangular selection user can select objects that are intersected by the selection 

rectangle as well as objects that are inside. While this option is turned on only objects inside 

rectangular selection are selected.  

2.1.2.5.2 Show/Hide Rulers 

See 2.1.1.3.1 

2.1.2.5.3 Show/Hide Grid 

See 2.1.1.3.2 

2.1.2.5.4 Snap to Grid 

See 2.1.1.2.7 

2.1.2.5.5 Show/Hide Guidelines 

See 2.1.1.3.3 

2.1.2.5.6 Snap to Guidelines 

See 2.1.1.2.8 

2.1.2.5.7 Show/Hide Cross Cursor 

Cross cursor is tool that can help user in certain situations. It draws cursor horizontal and 

vertical line above the whole workspace. 



 - 15 - 

2.1.3 Tool windows 

2.1.3.1 Properties  

Purpose of the properties window is to show and allow user to modify properties of selected 

object (chip, layer, element, grid, guideline). Listbox is filled with flatten list of all objects 

which properties can be changed.  

  

 
Figure 2-8: Properties tool window 

2.1.3.2 Layers 

The Layers tool window provides view on all chip layers. Appearance of each layer (color, 

transparency, visibility) in chip design window can be set there. There is also possibility to 

lock layer to avoid unwanted element manipulation.  

Order of layers can be changed by up/down buttons or by drag and drop. 

New layer can be added or deleted by New/Delete button. 

 
Figure 2-9: Layers tool window 



 - 16 - 

2.1.3.3 Objects Library 

The Library tool window manages user element libraries. New library is created by New 

button. Created library is deleted by Delete button. Any element can be inserted into created 

library by selecting element and pressing insert button. Element can be placed to chip layer by 

pressing Place button or by drag and drop. Elements can be also deleted from the library by 

Delete button. 

 
Figure 2-10: Objects Library tool window 

2.1.4 Working area window 

Working area window is the drawing area of the application. It is the place where user designs 

the chip. Depending on settings in Layers tool window there can be viewed all layers (with 

different colors and transparency). Rulers, grid a guidelines can be shown to make placing of 

objects easier and more precise. 

Multiple projects can be opened, then for each project new window with new tab is added. 

 
Figure 2-11: Working area tabbed window 



 - 17 - 

2.1.5 Status bar 

Status bar displays brief information about selected objects, current mouse position, relevant 

commands or fast hints. 

 
Figure 2-12: Status bar 

2.1.6 Keyboard shortcuts 

Keyboard shortcuts provide fast access to most important functions of the application. 

File 

Ctrl N New 

Ctrl O Open 

Ctrl S Save 

Ctrl Shift S Save As 

Ctrl Q Close 

Ctrl P Print 

Alt F4 Exit 

 

Edit 

Ctrl Z Undo 

Ctrl Y Redo 

Ctrl X Cut 

Ctrl C Copy 

Ctrl V Paste 

Del Delete 

 

View 

Ctrl + Zoom In 

Ctrl - Zoom Out 

Ctrl * Fit to Substrate 



 - 18 - 

Arrange 

Ctrl G Group 

Ctrl U Ungroup 

Ctrl W Weld 

Ctrl T Trim 

Ctrl I Intersect 

 

Align 

Ctrl Alt L Align Left 

Ctrl Alt R Align Right 

Ctrl Alt T Align Top 

Ctrl Alt B Align Bottom 

Ctrl Alt H Align Centers Horizontally 

Ctrl Alt V Align Centers Vertically 

 

Window 

Ctrl Shift B Library 

Ctrl Shift L Layers 

Ctrl Shift P Properties 

Ctrl Shift C Cut View 

Ctrl Shift 3 3D View 

 

New Element 

Ctrl Rectangle Proportional size (Square) 

Ellipse Proportional size (Circle) 

 



 - 19 - 

Edit Element 

Ctrl Rotation Step 15 degrees 

Size Proportional size change 

Move Move in vertical or 

horizontal direction only 

2.2 File formats 

2.2.1 FPSVG - Output language for vector image definition, based 
on SVG (Scalable Vector Graphics)  

2.2.1.1 Introduction  

In this document is explained the necessary syntax in order to define the output file for a chip 

specification file. We must consider that chip is made on different layers. In order to specify 

every layer we use a graphic language derived from XML, the SVG (Scalable Vector 

Graphics). 

This language has been adapted to our needs but it is very near to the standard SVG language. 

File (and also the designed chip) is divided into different layers and every layer into different 

shapes in order to describe the draw. Finally every layer has, also, some necessary options 

like, substrate depth and others. The output file will include the specification for the chip, 

layers and shapes. Every path, shape, or layer, ends with a carry return. The whole syntax is 

specified on the following document.  

2.2.1.2 Basic Shapes  

Properties can be of the following data types: 

 boolValue: bool value (i.e.: style=”fill:true;”) 

 intValue:  32bit integer value (i.e.: numberOfLayers=“5”) 

 floatValue:  float value, dot is the decimal separator, 

four decimal positions (i.e.: width=“1.2345”) 

 strValue: string value (i.e.: material=”SU-8”)  



 - 20 - 

2.2.1.2.1 Rectangle 

<rectangle x=”floatValue” y=”floatValue” width=”floatValue” height=”floatValue” 

style=”fill:boolValue; stroke-width:floatValue; rotate:floatValue;” />  

 
Figure 2-13: Rectangle properties 

x, y: upper-left point of the rectangle  

width: rectangle width  

height: rectangle length  

fill: kind of fill  

stroke-width: line width  

Rotation center is implicitly defined as x = topLeft.X + width/2, y = topLeft.Y + height/2.  

2.2.1.2.2 Circle 

<circle cx=”floatValue” cy=”floatValue” r=”floatValue” style=”fill:boolValue; stroke-

width:floatValue; rotate:floatValue;” />  

 
Figure 2-14: Circle properties 

cx: center x  

cy: center y  

r: radius  

rotation center is implicitly defined as x = cx, y = cy.  



 - 21 - 

2.2.1.2.3 Ellipse 

<ellipse cx=”floatValue” cy=”floatValue” rx=”floatValue” ry=”floatValue” 

style=”fill:boolValue; stroke-width:floatValue; rotate:floatValue;” />  

 
Figure 2-15: Ellipse properties 

cx: ellipse center x  

cy: ellipse center y  

rx: radius x  

ry: radius y  

Rotation center is implicitly defined as x = cx, y = cy.  

2.2.1.2.4 Line 

<line x1=”floatValue” y1=”floatValue” x2=”floatValue” y2=”floatValue” style=”stroke-

width:floatValue;” />  

 
Figure 2-16: Line properties 

(x1,y1): initial point  

(x2,y2): final point  

stroke-width: line width  



 - 22 - 

2.2.1.2.5 Shape options:  

 
Figure 2-17: Rotation 

rotate(angle): rotate the shape on the angle specified (in degrees)  

stroke-width: line width  

fill: 0 : shape is empty  

1: shape is filled  

Please note that chip is aligned so that top left is in the upper left corner. X axis grows to the 

right and Y axis grows down. 

2.2.1.3 Path command 

Command used in order to draw shapes that no include basic shapes, the path command uses 

the following syntax:  

<path style=”fill:boolValue; stroke-width:floatValue; rotate:floatValue;” d="strValue" 

/>  

Rotation center is implicitly defined as a center of internally computed path bounding 

box(minX, minY, maxX, maxY).  

Path (d) command options 

M: moves from the actual point to the point x,y without marking a line.  

 
Figure 2-18: Path move command 

Syntax: M x, y (floatValue, floatValue) 



 - 23 - 

L: draws a line from the actual point to x,y  

 
Figure 2-19: Path line command 

Syntax: L x, y (floatValue, floatValue) 

 

A: draws an elliptical arc from actual position to x,y with the following syntax:  

 
Figure 2-20: Path arc command 

Syntax: A rx ry x-axis-rotation large-arc-flag sweep-flag x y) 

rx: ellipse radius x (floatValue) 

ry: ellipse radius y (floatValue) 

x-axis-rotation: x axis rotation respect x axis (floatValue) 

large-arc-flag:  If 0: choose the shorter arc (intValue) 

if 1: choose the longer arc  

sweep-flag:  If 0: negative arc (intValue) 

if 1: positive arc  

x,y: final point of the arc  

 

Two points define two ellipses, we will define the arc chosen with the flags, there is an 

explanation of the flag options in Figure 2-21. 



 - 24 - 

 
Figure 2-21: Flags explanation 

 

Z: Draws a line from final to initial point of the shape, closes the shape.  

 
Figure 2-22: Path close command 

Path command can include fill and stroke-width options.  

2.2.1.4 File Syntax  

A chip file will be composed by several layers that will include a drawing, made by different 

basic shapes or path.  

File is a standard xml file thus it starts with xml header: 

<?xml version="1.0" encoding="utf-8"?> 

In order to specify the start and ending of a chip file use:  

<chip name=”strValue” material=”strValue” shape=”strValue” [ width=”floatValue” 

height=”floatValue” | radius=”floatValue”] materialThickness=”floatValue" 

numberOfLayers=”intValue”> /* start of the chip  

/* layer list 

</chip> /* chip end  

Volume will be formed by different layers. Every layer should specify the substrate depth of 

the layer, layer width and layer length, and also the material of the layer. Define the layers 

using the following syntax:  



 - 25 - 

<layer name=”strValue” material=”strMaterial” thickness=“floatValue” 

negative=”boolValue” number=“intValue”> /* layer start 

/* shapes and paths list  

</layer> /* layer ending  

 

Differences between this language and standard SVG  

- Fill is not a color (for example in SVG fill:green;) , fill it's only a flag.  

- Start and ending of the file are different in SVG. We have adapted them to our chip-oriented 

function.  

- We have deleted some extra options from standard SVG like transparency.  

- In SVG the value comes with the unit ( for example : x=”13cm”) in our case all units are in 

micrometers and we eliminate this from our language.  

 

In order to see the original SVG image, we should make very simple changes in our language:  

- Add the unit (micrometer in our case) to the value.  

- Change layer headers and volume headers for valid XML headers.  

- Change the fill flag for a color, for example: fill:black;  

 

For a better comprehension we attach here an example of a complete file for the sample 

design shown on Figure 2-23:  

<?xml version="1.0" encoding="utf-8"?> 

<chip name="My Chip" material="CPyrex" shape="Circular" diameter="76.2" 

materialThickness="1500000" numberOfLayers="2"> 

  <layer name="Layer One" material="SU-8_2002" thickness="2000" negative="True" number="0"> 

    <rectangle x="2.1E+07" y="1.1E+07" width="6000000" height="6000000" style="fill:True; 

    stroke-width:100; rotate:0;" /> 

    <circle cx="3.3E+07" cy="1.4E+07" r="3000000" style="fill:True; stroke-width:100; 

    rotate:0;" /> 

    <line x1="3.9E+07" y1="1.7E+07" x2="4.5E+07" y2="1.1E+07" style="stroke-width:100;" /> 

  </layer> 

  <layer name="Layer Two" material="SU-8_2002" thickness="2000" negative="True" number="1"> 

    <ellipse cx="2.6E+07" cy="2.1E+07" rx="5000000" ry="2000000" style="fill:True; 

    stroke-width:100; rotate:0;" /> 

    <path style="fill:True; strokeWidth:100; rotate:0;" d=" M4E+07 2E+07 L4,3E+07 2E+07  

    L4,3E+07 2,1E+07 L4E+07 2,1E+07 L4E+07 2,3E+07 L3,5E+07 2,3E+07 L3,5E+07 1,9E+07 L4E+07  

    1,9E+07 L4E+07 2E+07Z" /> 

  </layer> 

</chip> 



 - 26 - 

 
Figure 2-23: Sample design 

 

2.2.2 FPM – FlashPOM proprietary file format 

FPM file format is binary format for saving chip design projects. It is compressed XML 

image of the design and user settings. 

2.2.3 File with available materials and cost function parameters 

This file is intended to be placed on the internet together with timestamp file so the user is 

allowed to update the file regularly.  

File is in standard XML format and contains following data. 

2.2.3.1 Laser resolution 

Value represents resolution of the laser device in nm units. 

2.2.3.2 Unit surface price 

Value means price for area of 1nm
2
 in Eur. 

2.2.3.3 Substrate materials  

For every material there are listed following properties: 

2.2.3.3.1 Name 

Name is identification of the material and has to be unique. 

2.2.3.3.2 Shape 

Substrate material can have circular or rectangular shape. 

2.2.3.3.3 Radius 

If material is circular shaped then Radius specifies size of the layer in millimeter units.  



 - 27 - 

2.2.3.3.4 Substrate Width 

If material is rectangular shaped then Width specifies the size/width of the layer in millimeter 

units. 

2.2.3.3.5 Substrate Height 

If material is rectangular shaped then Height specifies the size/height of the layer in 

millimeter units. 

2.2.3.3.6 Material Thickness 

Value defines Thickness of the substrate material in micrometer units. 

2.2.3.3.7 Border distance 

This value will be obtained experimentally. Currently it is set to about 5mm what is 

reasonable reserve. It defines distance in millimeter units from the border of the material 

where material properties have homogenous characteristics.  

2.2.3.3.8 Price 

Price of the material is defined in Euros. 

2.2.3.4 Layer materials 

For every material there are listed following properties: 

2.2.3.4.1 Material Name  

Name is identification of the material and has to be unique. 

2.2.3.4.2 Negative 

Value defines whether material is negative or positive. Positive material means that what gets 

exposed by laser will go away. Allowed values are true/false. 

2.2.3.4.3 Resolution 

Resolution of the material defines the smallest size of the dot that can be made on the layer. 

Value is defined in micrometer units. 

2.2.3.4.4 Minimum Thickness 

Minimum Thickness stands for minimal manufacturable thickness of the material. Value is in 

micrometer units. 

2.2.3.4.5 Maximum Thickness 

Maximum Thickness stands for maximal manufacturable thickness of the material. Value is in 

micrometer units. 

2.2.3.4.6 Price 

Price of the material is defined in Euros. 



 - 28 - 

2.2.3.5 Compatible materials 

Part compatible materials contain enumeration of compatible material couples. While 

designing the chip it depends on which layer is lower and which upper. Compatible couple 

record reflects this need.  

For a better comprehension, example of a complete file:  

<?xml version="1.0"?> 

<productionSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <laserResolution>200</laserResolution> 

  <unitSurfacePrice>1E-06</unitSurfacePrice> 

  <substrateMaterials> 

    <substrateMaterial name="CPyrex" shape="Circular" radius="20" substrateWidth="0"  

    substrateHeight="0" materialThickness="1500" borderDistance="5" price="20" /> 

    <substrateMaterial name="RPyrex" shape="Rectangular" radius="0" substrateWidth="36"  

    substrateHeight="36" materialThickness="1500" borderDistance="5" price="20" /> 

      <substrateMaterial name="CSilicon" shape="Circular" radius="50.8" substrateWidth="0" 

      substrateHeight="0" materialThickness="300" borderDistance="5" price="40" /> 

    </substrateMaterials> 

    <layerMaterials> 

      <layerMaterial name="SU-8_2002" negative="true" resolution="1" minimumThickness="2"  

      maximumThickness="3" price="50" /> 

      <layerMaterial name="SU-8_2100" negative="true" resolution="1" minimumThickness="100"    

      maximumThickness="270" price="70" /> 

      <layerMaterial name="SPR-220-7.0" negative="false" resolution="1" minimumThickness="5.5"  

      maximumThickness="10" price="50" /> 

    </layerMaterials> 

    <compatibleMaterials> 

      <compatibleCouple upper="CPyrex" lower="RPyrex" /> 

      <compatibleCouple upper="RPyrex" lower="CPyrex" /> 

      <compatibleCouple upper="RPyrex" lower="SU-8_2002" /> 

      <compatibleCouple upper="SU-8_2100" lower="SU-8_2002" /> 

    <compatibleCouple upper="SU-8_2100" lower="SPR-220-7.0" /> 

  </compatibleMaterials> 

</productionSettings> 

2.2.4 Timestamp file 

Time stamp file is loaded on web server together with program installation files production 

settings file. Application compares this file to latest updates and depends whether to update 

application or production settings file. 

Sample of timestamp file: 

<?xml version="1.0"?> 

<dateTime>2007-05-31T14:57:59.5218714+02:00</dateTime> 

2.3 System-Specific Requirements 

2.3.1 Elementary objects 

Elementary objects that can be easily placed by user to chip layer are line, rectangle and 

ellipse. 



 - 29 - 

2.3.2 Program functions 

2.3.2.1 Cost function 

Cost function will be fixed in program. Parameters of the function are to be stored in the file 

with available materials and cost function parameters, see 2.2.2. 

Equation for computing cost of the chip is following: 

layers layers

rfaceelementssuepriceunitsurfaclayerpricericesubstratepchipprice *  

Figure 2-24: Equation for chip price with negative layers. 

layers layers

rfaceelementssuepriceunitsurfaccepricewholesurfalayerpricericesubstratepchipprice )*(

 

Figure 2-25: Equation for chip price with positive layers. 

2.3.2.2 Constraints 

Program should have function that will check whether chip designed by user can be 

manufactured.  

2.3.2.2.1 Layer compatibility 

Program has to check whether stacked layers are compatible between themselves. 

2.3.2.2.2 Boundary 

Program has to check whether all elements are inside safe substrate boundary. 

2.3.2.2.3 Overlapping elements within one layer 

Program should check whether element overlaps another one. This in production phase 

prevents laser to burn on one position two times.  

2.3.2.2.4 Support in layer below 

Program should check whether elements in upper layer have support elements in layer below. 

2.3.2.3 Print 

User has to be able to print designed chip. Dialog window pops-up and user can adjust layout 

of printed page. 

2.3.3 Chip design functions 

2.3.3.1 Zoom 

Zoom function allows user to magnify the view on chip. 100% of zoom means that 1mm on 

the computer monitor equals to 1mm on chip substrate.  

2.3.3.2 Distribute 

Distribute function helps user to make copies of selected element placed into rectangular 

array. Number of copies in horizontal/vertical direction is to be set in distribute dialog. 

Horizontal/vertical distance between respective copies can be set there as well. User can 



 - 30 - 

choose whether the distance is measured as a distance between element centers or as a 

distance between element bounding box borders. 

 
Figure 2-26: Distribute dialog 

2.3.4 Chip visualization functions 

2.3.4.1 Cut View 

 
Figure 2-27: Visualization of the chip cut 

User can select the cut line, than in special window cut thorough all chip layers will be shown. 

2.3.4.2 3D chip visualization 

 
Figure 2-28: 3D chip visualization of positive and negative layer 

Program should have a function to show 3D preview of the chip or at least 3D preview of the 

area of interest on the chip. User will be allowed to switch on/off visualization of each layer.  

2.3.5 Update  

Update function should allow user to update production settings file and the application. 



 - 31 - 

3 Non-Functional Requirements 

3.1 System-Related Non-Functional Requirements 

3.1.1 Operational Environment 

3.1.1.1 Hardware Platform 

Intel Pentium III processor or compatible 

Direct3D compatible graphics card (only in case of 3D Visualization) 

3.1.1.2 Software Platform 

Microsoft .NET Framework 2.0 

Microsoft Direct3D 9.0c for Managed Languages (only in case of 3D Visualization) 

3.1.2 Time plan 

11-13.9.2006 Kick Off Meeting Barcelona 

25.9.2006 Expected induction meeting with CZ team members 

23.10.2006 Start of the BETA version implementation 

1.12.2006 BETA version testing 

15.12.2006 Release of the BETA version 

1.1.2007  Start of the RELEASE version implementation 

11.6.2007 RELEASE version testing 

30.6.2007 Release of the RELEASE version 

 

3.2 User Interview Transcripts 

Q: Should 3D Visualization be part of the editor or standalone application? 

A: Some kind of 3D Visualization would be nice, especially when we are making papers 

or posters. But it is not a must. We don’t care if rendering part will be the part of 

application. In example it can be done as export to file with POV-RAY format. For the 

same reason it would be nice to have an export to EPS format. Not if this means that the 

program doesn't run without Direct3D. 

 

Q: How many undo/redo steps there should be? 

A: Yes, we would like to have undo/function. We should be able to set number of steps in 

program properties. 

 

Q: Is there requirement on some kind of versioning? 

A: No.  

 

Q: Future enhancements. I.e. C-like chip definition language, Input/output ports on user 

defined objects etc. 

A: Maybe in future versions, but it’s not a question of the day. 

 



 - 32 - 

Q: After some discussion we came to conclusion that all chip layers will be aligned to top 

left corner, where will be the coordinate’s origin. What is not clear if each layer of the 

chip can have different size (i.e. if layers will be made from different materials)?  

A: Yes all the layers have the same size. 

But - and this here is new - layer != mask. 

Sometimes we take a small area of the layer and copy it several times to the mask (in 

arrays). We do this when the features in the layer are very small compared to the whole 

chip size. Then we create arrays of these features to increase the yield of the fabrication 

process. 

Therefore I propose: 

 a layer object with width,height for designing the chip with its features  

 a region (bounding box) can be selected which encloses the features of interest. 

This area is then copied as a pattern into a 

 mask object 

The mask has its own width,height. The pattern from the layer object gets copied into 

the mask multiple times in array form. Please have look at the attachment Mask-Layer-

Relation.pdf for a visual description of the relation. As you can see it would be nice to 

have the option to add bounding boxes and text to the mask. This way it's easier to 

distinguish the masks (in the end they look very similar). 

 
Figure 3-1: Mask-Layer-Relation 

 



 - 33 - 

Q: What are the constraints while designing chip (i.e. what is the minimal distance 

between the placed rectangles, lines (electrodes))?  

A: It depends on the mask fabrication process. With our current foil mask the resolution 

is effectively somewhere around 5-10µm. The laser process might be better. But I 

wouldn't spend time and energy on this at the moment. In my opinion this is a feature 

for future versions. 

 

Q: Is there any constraint on line crossing? Is it possible that one line cross another? 

What the program should do (not allow this situation / mark these objects when “check 

button” will be pressed / do nothing – user is smart enough to avoid this situation)?  

A: When doing masks in Freehand I often let lines cross. But these are all lines that 

belong to the same structure e.g. an electrode. Have a look at the attachment Line-

Overlap.pdf to see why. 

 
Figure 3-2: Line overlap 

 

The crossing on the left is not "clean" and therefore I move the line deeper into the 

other object to get a cleaner connection. 

I also do it sometimes with connections like the one on the right which should not be 

critical. But I saw some Postscript-Interpreters handle such small features and the 

results were terrible. They are at the limits of their resolution and then rounding errors 

can lead to two such features separating in the final print. Therefore I introduce an 

overlap in a attempt to counter such rounding errors. 

I wouldn't do checking in this version. 

Another feature might be a de-overlapping function which will be needed for the laser 

control. For the printed masks it does not matter if an area is painted black twice but if 

the laser exposes the photo resist two times at the same place this could cause problems. 

See attachment De-overlapping.pdf. 

 



 - 34 - 

 
Figure 3-3: De-overlapping 

 

But I don't know where is the best place to implement this functionality, in the design 

program or in the laser control program? 

 

Q: Should be the constraints restrictive (i.e. while designing chip should be user allowed 

placing objects closer than is allowed – than there can be button after it’s activation 

dangerous objects will be marked)?  

A: No, not in this version. And then only warnings, no restrictions. If the user wants to 

shoot in his foot the program shouldn't hold him back. ;) 

 

Q: What are proposed cost estimations constraints? 

A: Right now we don't have any sensible cost function. The printed masks cost the same 

- regardless what's on them. The laser might be different, some masks might be faster to 

expose than others. But this will turn out during the first trials with the laser control 

program. 

So drop this feature for this version. 

 

Q: What should be the resolution – this means what is the smallest recognizable unit and 

what is the maximal size of layer (i.e. Let’s say that we will use 32bit unsigned integer (0- 

4294967296) for storing position information, smallest unit is 1nm, than maximum size 

of the layer is 4,294m. Is it enough?) ?  

A: This should be enough, yes. Btw. the range for an unsigned int only reaches to 

4294967295. Don't forget the zero. ;) 

 

Q: What means default 100% zoom (i.e. 1px~10nm, or should it be option to set in 

program settings)?  

A: 1px~10nm is surely too small but I also don't know a good default value. It should be 

an option then to set the value for 100%. Zooming in and out happens quite frequently 

and comfort for this function would be nice. Maybe you can some extra buttons for it in 

the toolbar which set the zoom factor to a pre-defined value (quick zoom buttons). The 

pre-defined values should be an option in the program settings. 

 

Q: This should be kind of advanced option maybe in future versions. Some professional 

solutions (i.e. AutoCad) have possibility to enter the objects thorough command line. 

Should it be helpful to have something like console window from where user will be able 

to control the program only with keyboard and knowledge commands? (Hardness of 



 - 35 - 

implementation of this feature depends on functionality we want. It is not so hard to 

have basic commands like “Add Rectangle 10 10 100 50 0.5” but is harder to have 

complete script language based i.e. on python.) 

A: It should be possible to edit the numerical values of the control point coordinates. But 

a command interpreter like this is not necessary in the first version. 

 

Q: Should there be a Print function?  

A: No. 

 

Q: What should be the maximal/minimal zoom (i.e. 10% to 1000% or equivalent 

1nm~1px to 1cm~1px)?  

A: 1nm~10px to 10cm~1px - a bit wider. ;) 

 

Q: We are not sure if has any sense to have preview of each layer in Window layers tool 

window because these images will be so small that in most cases nothing will be seen 

here. One solution is to display some surroundings of the place that was changed last 

time.  

A: Yes drop the previews. And I'm also not convinced of the usability of the other 

solution with the recently changed surroundings. Maybe you can add a highlight 

function? E.g. a double-click onto the layer field causes the features belonging to this 

layer to be high lighted. This could answer the "To what layer does this feature belong 

again?" question. ;) 

 

Q: What is the requirement on transformations? The deal is that with i.e. scale, rotate 

about arbitrary degree, etc. we have to compute in floats and we loose the precision.  

A: True but I fear it's inevitable.  

 Scaling *is not* necessary.  

 Mirroring *is* necessary. 

 Rotations *are necessary* with arbitrary degrees. :(  

Can you use doubles internally and then convert back to unsigned ints? 

 

Q: Do you missing some “window” or function from your favorite editor? 

A: Apart from what I mentioned above, no. The biggest new feature might be the text 

function for the masks. Here I don't need all the fancy fonts a simple but scalable font is 

ok. 

 

Q: There was an idea to have for every layer an export checkbox (or something) in 

Layers window, so that only selected layers will be than exported. Is it valuable 

function? 

A: No, that was my first idea for the masks. Have a look at the mask idea above and 

forget about this idea. 

 



 - 36 - 

Q: Will it be handy if every object will have notes field in properties? To write some 

notes about the particular object, i.e. for other persons who will work on the design. 

A: This might be nice to have but not really necessary. 

 

Q: When we rotate the group of objects (2) and then change the size of thegroup (3) the 

former rectangle in the selection is not more a rectangle – it has to be transformed to 

path (to be precise to parallelogram). But this is one way process - if we transform the 

primitive to path then there is no way how to transform it back to rectangle (what is 

more convenient for laser device). There are two possible solutions: 

* Allow only symmetric size change on group of objects - thus the rectangle still remains 

to be a rectangle 

* Allow the transformation to path - with no way back to former primitives 

What is more suitable? 

A: I like the idea of retaining the shape type. You should be able to stretch a rectangle 

along any of the two axis but there is no need to allow the user to drag an individual 

corner and turn it into a parallelogram. 

 


